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LE'lTER TO THE EDITOR 

Intrinsic fluctuations associated with the onset of a 
centre manifold 

Ariel Fernindez 
Frick Laboratory, Princeton University, Princeton, NJ 08544, USA 

Received 29 January 1987 

Abstract. A stochastic centre manifold treatment is applied to study a subcritical inverted 
bifurcation scenario. We demonstrate that the intrinsic fluctuations are subject to scaling 
relations involving the small parameters characteristic of the particular unfolding. A 
stochastic counterpart of the Lorenz system reduced to Poincart normal form is analysed. 

After the pioneering work by Ruelle and Takens [ 11, the relevance of centre manifold 
(CM) reductions became apparent when studying the onset of strange attractors in 
hydrodynamic systems. 

Although the Ruelle-Takens scenario and the subcritical inverted bifurcation 
scenario for the transition to turbulence have been extensively investigated (see, for 
example, [2-4]), the nature and effect of intrinsic fluctuations in hydrodynamic critical 
phenomena remains obscure [5,6]. The stochastic counterparts of the relevant order 
parameter equations are poorly understood [5,6]. 

A starting point for studying this problem is the fact that, in a neighbourhood of 
a critical point, the probability distribution of fast-relaxing degrees of freedom is 
confined to a narrow strip along the CM [7,8]. The slowly varying degrees of freedom 
are the order parameters of the system which, in this letter, will be regarded as the 
CM coordinates [8]. 

To narrow down the scope of our discussion we shall concentrate on a stochastic 
counterpart of the subcritical inverted bifurcation scenario for the onset of a Lorenz 
attractor [4]. As we shall show in this letter, in this particular case the width of the 
strip depends on the slowly varying order parameters of the system, i.e. on the position 
on the CM. 

The main result of this letter is to establish the fact that the proper scaling of the 
random source terms cannot be obtained by extrapolating from results on thermal 
equilibrium fluctuations [6] but depends on the small parameters characteristic of the 
instability. Thus we can state that the scaling of thefluctuations which lead to the onset 
of a C M  representing a dissipative structure is part of the information already contained 
in the Poincare' normal form associated with the C M .  

It should be emphasised that, unlike the case of a Hopf bifurcation, the CM, being 
a locally attractive and locally invariant surface, does not contain the limit cycle. This 
cycle is unstable and appears below the critical value ( r T )  for the bifurcation parameter, 
i.e. r < rT. Instead, the CM is tangent at the laminar steady state for r = rT to the space 
spanned by the eigenmodes with neutral stability. These modes are associated with 
the eigenvalues which cross the imaginary axis at criticality [7,8], i.e. the CM coincides 
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locally with the Lorenz-invariant surface which emerges beyond the dynamic instability 
and corresponds to the sudden transition to turbulent behaviour [4]. 

The object of interest in our approach is the probability density functional P =  
P(X,, Xf,  t ) .  The components of the vector X,, Xs,i, i = 1, .  . . , S, are the slowly varying 
order parameters or CM coordinates of the system. The components of Xf are the 
fast-relaxing degrees of freedom XF,,, j = 1,. . . , F, which are enslaved by the order 
parameters in a neighbourhood of the critical point. This statistical subordination 
justifies the following ansatz [7 ,8]:  

P(XS, Xr, t )  = m ,  t)Q(xflxs) 

Q(XfIXs) = n (gj/T)L’2 exp{-gj[Xf,j - F;(x~)I*). 

(1) 

where the factor Q represents a conditional probability and is given by 
F 

(2) 
j = l  

In this relation, XZj = C(X,) is the CM equation and the Gaussian width d, = (2gj)-”2 
is a function of the position on the CM as will be proven in this letter: 

-1’2 

d, = gj,+ gjixs,i) , 
1 = 1  

(3) 

The problem of fluctuation scaling reduces to the problem of finding the adeqtiate 
scaling factor for the gji so that the Fokker-Planck (FP) equation for P can be integrated 
with respect to the Xf,, along the CM providing an equation of continuity for p, i.e. 
allowing for a continuous flow of probability about the CM.  

The reduced FP equation for 13 should correspond therefore to the stochastic 
counterpart of the “educed Lorenz system expressed in Poincare normal form. Let 
T represent the transformation associated with the local CM reduction of fast-relaxing 
variables T :  X + (X,, Xf). Then the reduced FP equation is obtained by making use of 
(1)-(3) and computing the following integral: 

where f = f ( t )  is the random source for intrinsic fluctuations, eo are fluctuation 
covariances: 

( 5 )  d ; , ~  (1 - r’)  = ((Tf)a,i ( t )  (Tf) , ,  ( t ’ ) )  a, b = s, f 

and the averages are taken over an ensemble of realisations of Tf( t ) .  
Specifically, we shall consider the Lorenz equations 

x = a( Y - X )  

Y = - X ( 2 - r ) - Y  ( 6 )  
Z = X Y - b Z  

where r is the reduced Rayleigh number ( r  = R /  R ,  with R ,  the critical value for the 
onset of the laminar convective state), U is the Prandtl number and 6 is a geometrical 
ratio [4]. 
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A 

-2w/u l + J  
U 

2w2 2 w ( u + l )  -A,(l+u+A,) - 
UA uA uA - 1 T-I = ( 7 )  

B = ( A 3  - p) '+ W' 

D = C - l ( b + p ) (  b+ A 3 )  

C = ( b + p ) 2 + w 2  

E = A / B  

U ,  = 2E[D(2u  - b )  - p - 13 a, = 2Ew(2u - b ) ( b  + A3)C-' -2Ew (12) 

(13) a -1 
5 - 2 ( a 3 - f a 1 )  

a -1 a,= E ( 3 u + A 3 ) + f a l  4-2a2 

(16) 

2u+A, 
b+A3 

b2 = -( a1 - 4a,) b3 = -E w-'( U + A,)( h3 - p ) + C w  - I  - 

b 4-2b2 -1 b5=4(b3-fbl). 

The integration of equation (4) making use of equations (1)-(3) gives 

- 8 ,  [ ( ki - (Tf) , ) l'] - ( k, - (Tf) , ) 
- ( k3 - (Tf) 3 )  P - 2 kgP + 4 kpg (a,, s3 + ax,  F,) P 

+ kp2 c [ai,,, 13 + l' - 
1 = I . 2  

where zi = X i ( X I ,  X,,  s3), i = 1,2,3,  and c3, = 2k, Cii = 2pk, i = 1,2. 
The CM equation for this particular problem can be calculated taking into account 

the statistical enslavement of X ,  to the order parameters valid in the regime under 
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consideration, where there is a large separation of relaxation timescales. Writing the 
analytic expansion of X ,  as [8] 

0;. 

x3 = F3,CXA = n = 2  c ( i+j=n n c,,xix:) 

the CM coefficients can be calculated from the relation: 

making use of relations ( l o ) - (  16). Retaining only second-order terms, a simple calcula- 
tion gives 

( 2 0 )  

cO2 = A;'wcll. ( 2 2 )  

In order to display the relative size of the terms in (17) and obtain a FP equation 
for P which corresponds to the cwreduced equation, we must make use of the scaling 
relations and evaluate g explicitly. 

The equation of continuity for P is 

We introduce the following scaling: 

k = O( ( r  - rT)2 )  d = (2g)-'" = O( ( r  - r T ) )  XI,  X 2 = 0 ( ( r - r T ) 1 ' 2 ) .  ( 2 4 )  

Then, to order ( r  - r T ) ,  (17) reduces to (23) if and only if 

The Gaussian width d provide$ a measure of the local attractivity of the Lorenz 
invariant surface [ 9 ] .  Therefore, as we take the limit r + rT + 0, the probability distribu- 
tion tends to a Dirac delta function peaked at the CM. Thus, the C M  becomes less 
attractive as we depart from criticality. The scaling relations given in (24) determine 
the scaling of the intrinsic fluctuations. 
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